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Macromechanical evaluation of random strength
of heterogeneous materials
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The random strength of heterogeneous materials is considered as a function of volume
fraction of the material components. A general macromechanical probabilistic model is
created that permits one to consider all experimental results jointly, and therefore, minimize
the experimental programme. A probabilistic description and corresponding method of
statistical treatment, taking into account variability of the volume fraction on both the
average strength and strength scatter, is offered. Experimental confirmation of the approach
is presented using three examples of polymer blends of polyethylene and polypropylene.
The influence of volume fraction scatter is analysed in detail, and it is noted that the scatter
may lead to a significant increase in variability of the strength. A generalization of the
approach is considered for other relevant problems, such as random thermal expansion as

a function of temperature and random strength of multi-component (hybrid) materials.

1. Introduction

Reliable design of materials and structures may be
carried out only using well-defined information re-
garding properties of materials and service conditions.
Generally, the properties, such as strength, possess
significant variability which may be described in
a probabilistic framework. Moreover, the failure of
materials has an obvious stochastic nature. Thus, the
random response of materials should be taken into
account along with information about the stochastic
nature of loading and environments. It gives an op-
portunity to develop probabilistic design methods,
numerically predict reliability as a probability of
meeting the certain product requirements [1], and
solve important practical problems, such as size effect
evaluation, probabilistic optimization, statistical
treatment of experimental results, etc.

Evaluation of the random strength of composite
materials is especially difficult because of their hetero-
geneity and a practically infinite number of possible
microstructures. In other words, a particular strength
distribution is required for each possible microstruc-
ture. Existing methods of micromechanics allow one
to predict the deterministic response of many com-
posite (heterogeneous) materials from the properties
of components and the geometry of their distribution.
There are, however, many instances where the micro-
structure of the material is too complex for well-
defined micromechanical modelling and analysis.
Moreover, properties of the components cannot
always be assumed to be the same as the pure con-
stituents because of physical-chemical changes that
occur during materials manufacturing and storage.
One can also note complex changes in the material
microstructure due to, for example, interface debon-
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ding or accumulation of microdamages. Conse-
quently, a stochastic “macromechanical” analysis is
often the only way to obtain a reliable statistical
information on the heterogeneous materials strength.
This usually requires the use of labour-intensive and
time-consuming experimental programmes, since it is
necessary to obtain statistical information separately
for each considered microstructure and/or environ-
mental condition.

An approach which allows one to minimize the
amount of data required is to create a general macro-
mechanical probabilistic model which analyses all ex-
perimental results together. Thus, an objective of the
paper is to develop a simple and less time-consuming
method of macromechanical evaluation of the random
strength of heterogeneous materials and show its ap-
plication for typical polymer compositions.

2. Probabilistic model of strength
Generally, the reliability of materials or structures, H,
may be evaluated as [1]

H=P{R>0; (1)

where P{R > 0} is the probability of the random
event R > ; 0 is the random parameter(s) of loading;
and R is the random characteristic(s) of the strength
response. (Here and further, sign “~” above variables
shows their random nature; sign represents the
average value.) Numerical evaluation of the reliability,
using the Equation 1, depends on the statistical distri-
butions of R and Q. Solutions to particular problems
may be found, for example, in [2]. Although any
experimentally determined statistical distributions of
strength may be used in principle, such distributions
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as normal, Weibull, and log—normal are the most
popular ones in numerous engineering and scientific
applications. These distributions may be determined
by two statistical parameters only. Reliable evaluation
of the main statistical characteristics may therefore be
expressed in terms of the average value and the stan-
dard deviation.

In describing deterministically the strength of a het-
erogeneous material as a function of volume fraction,
each potential mechanism of failure should be con-
sidered separately. Therefore, the particular mode of
failure at a given volume fraction is determined by the
mechanism providing the minimum value of strength
and, generally, a deterministic evaluation of the
strength may be represented as a piecewise-smooth
function of the volume fraction. In considering the
problem in a stochastic framework, all possible mech-
anisms are analysed together using certain probabilis-
tic models, i.e. all mechanisms are taken into account
with different probabilities depending on the volume
fraction. Separate potential mechanisms of failure are
not considered in detail using a “macromechanical”
approach. However, one can make a conclusion that
the dependence of the random strength on the volume
fraction may be written as “one” stochastic smooth
function in a macromechanical statement of the prob-
lem.

The dependence of the random strength, R, of
a two-component heterogeneous material on volume
fraction, \, may be represented in a general form as:

R(Y) = R(W) + 7R*() 2

Here, 7 is the random variable, which determines the
strength scatter; R(\) is the deterministic function of
\ showing the strength average value; R*({) is the
deterministic function reflecting the dependence of the
strength scatter on volume fraction (here, s reflects the
volume content of one of the two components). We
also suppose that distribution of 7 is determined by the
following main statistical characteristics: o, is the
standard deviation and i = 0 is the average value. For
practical applications, it is convenient to use power
series for approximations of the functions R(\J) and

R*():

M=

RW=Y RW RW=Y R O

j=0

It is easily shown that in the case of the non-random
nature of the volume fraction, the average value, R,
and the standard deviation, oy, of strength may be
evaluated as:

R=R(y) or=0.R*) Q)

In a case of a normally distributed variable 7, the
distribution of R will also be normal, with a probabil-
ity density function, pg, as:

o R=RWP
PRV = o) exp{ 20k(V) } ?

Let us note that any other distributions may be uti-
lized in principle. For example, for the two-parameter
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Weibull distribution in the form

b B
k= R e| (5] @

The respective statistical characteristics 4 and § may
be calculated on the basis of the following relation-
ships [3]:

I'(1 +2/B) _ 2 _R
20+ P I=vi(y) A=RW)/T1+1/B) (7)
where vi(V) = ox(V)/R() is the coefficient of vari-
ation of strength; I' is a Gamma-function.

3. Evaluation of statistical parameters

Strength parameters of Equations 2 and 3, R, R¥;
j=1,...,m; and o,, can be evaluated using a statist-
ical treatment of relevant experimental data. However,
application of the classical least squares method may
lead to incorrect results, because, in a general case, the
strength scatter also depends on volume fraction. Fig.
1 illustrates the difference between the classical and
proposed methods: in the case of the least squares
method application, the strength scatter is constant
(Fig. 1a), while the introduced probabilistic model
takes into account the actual variation (Fig. 1b). Obvi-
ously, in a particular case of the model when
R*() = 1 = constant, statistical evaluation of the
parameters is reduced to application of the least
squares method.

We suppose that there is a sample of experimental
values R;, ;, i = 1, ...,n where n is a number of the
measurements. In contrast with the classical least
squares method, the difference between the measured
(R(\)) and expected mean (R(\s)) values will be a func-
tion of volume fraction:

R() — R(\) = #FR*(\) # constant 8)
However, the random expression

R(Y) — R(Y)
— )

R*(Y)
is not a function of {y and should be distributed as .
Therefore, the appropriate minimization procedure to
obtain R; may be written by analogy with the least

Wy ~J~U-| W

(a) (b)

Figure 1 Schematic distribution of the strength scatter using (a) the
classical least squares method and (b) the approach presented.



squares method as:
~ 1 (R, —RWy? .
®(R;) = Z,-; {71?*(\111-) } — min (10)

where R; is the ith experimental value of the strength
corresponding the volume fraction \;: R(y;) and
R*({5;) are the theoretical (expected) values given by
Equation 3 at \y = \j; as:

RWi)= Y R/ R¥(p)= Y RFW (11

j=0 ji=0
The minimization procedure is carried out by letting:
0®(R;)/0R; =0  j=0,....,m (12)

The coefficients R; may thus be obtained as:

[R]=[B]'[C] (13)

where [R], =[Ro R ... R,,]] and components of the
matrices [ B] and [C] are calculated as:

ViR,

Bi=2 77— CG=X 7w 5 |
S Erw) (5 Rew)
1=0 =0

Let us note that in the classical least squares method,
the function R*(\;) = Y, Rf i is assumed to be
equal to 1. One can see from Equations 13 and 14 that
determination of the coefficients R; (j =0, ..., m) are
based on information regarding R¥ (j=0,...,m),
which is also unknown. Thus, the following iterative
procedure is proposed (Fig. 2). At the first iteration, we

n \|J{+k72 n

14)

Input of m; R;;y;;i=1,...,n

Ri=1;R*=0; j=1,...m

Calculation of [B], [C]

Calculation of R;; j=0,....m

Calculation of AR(y;);i=1,...,n

Calculation of ﬁ*;j=0 ..... m

Calculation of o,

J

No
< Convergence condition? N
/
Yes
Results

Figure2 Flow-chart of numerical evaluation of the statistical para-
meters.

suppose that the function R*(\) is a constant, i.e.
RE =1, R¥=0; j=1,...,m. Then, after the calcu-
lation of R; using the Algorithm 13-14, the “actual
absolute errors” AR(y;) are calculated for each

measurement (i =1, ...,n) as:
AR(Y:) = |R; — R(V;)| (15)
Calculation of R¥ (j =0, ...,m) is carried out on the

basis of the classical least squares method for sample
of AR(\;); i=1,...,n. The standard deviation of
7 may be obtained as:

1o [R - R(%)ﬁ”z
{” i;1 |: R*({)
This cycle of statistical evaluation is developed again
using obtained values of R} (j =0, ...,m). A condi-
tion of convergence is based on the required accuracy.

That is the difference in results between the nearest
iterations should be less than desired accuracy.

4. Experimental programme

Let us consider, as an example of the proposed ap-
proach, statistical evaluation of random tensile
strength of three different polymer blends. The com-
ponents of the blends are: low density polyethylene,
polypropylene, maleated polyethylene (Polybond
3001) and maleated polypropylene (Polybond 3009).
The maleated polyolefins were commercial products
supplied by Uniroyal Chemical. Pellets of these mater-
ials were blended in a twin screw Brabender mixer at
190 °C for 12 min at 50 r.p.m. Three different types of
blends were thus obtained: mixtures of neat polyethy-
lene and polypropylene (material “a”); mixtures of
polyethylene and polypropylene with 25% by weight
of maleated polyethylene and maleated polypropylene
(material “b”); and mixtures of maleated polyethylene
and maleated polypropylene (material “c”). Dog-
bone-shaped specimens were compression moulded in
a Wabash heat press at 200°C for 5 min and then
water quenched under pressure. Tensile strength was
measured with an Instron 1011 tensile machine, equip-
ped with a 1001b (45.4 kg) load cell; the crosshead
speed was 10 mm min .

Seven different compositions were prepared for
each type of blend at y = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1.
Here, \ is the volume fraction of polypropylene in the
“a” blends; the total volume fraction of neat and
maleated polypropylene in the “b” blends; and the
volume fraction of maleated polypropylene in the “c”
blends.

Values for the R, R¥, o, of Equations 2 and 3 used
to characterize the random strength (at m = 4) are
presented in Table I. (The requirement of accuracy has
been chosen as 0.001 for o,.) There is, in general,
a difference between statistical parameters evaluated
at the first iteration (the classical least squares
method) and at the last iteration (the approach pre-
sented). Although the main differences are shown for
parameters R}, significant distinctions may be noted
for o, and R; as well. Experimental distributions of

1511



TABLE 1 Statistical parameters of tensile strength

Parameter Material “a” Material “b” Material “c”
Iteration Iteration Iteration
the 1st the last the 1st the last the 1st the last
n 50 50 41 41 37 37
o, 0.963 1.098 0.646 1.399 0.659 1.150
R, 36.97 36.84 38.50 38.44 37.51 37.48
R, —63.78 —51.73 —29.50 — 3224 —6.89 —6.24
R, 109.42 50.52 —17.89 1.06 —51.36 — 53.66
R, —131.72 —44.18 30.95 —3.38 89.21 90.62
R, 59.57 18.98 — 8.68 9.65 —44.45 —44.06
R} 0.698 0.709 0.382 0.402 0.492 0.486
R¥ 3.906 —0.133 1.645 2.550 2.242 2.180
R% —8.077 18.235 —4.565 —9.041 —14.124 —13.930
R% 1.259 — 44,857 5.039 10.817 27.728 27.803
R% 2.380 26.275 —2.249 —4.546 — 16.167 —16.397
R;, R¥ in MPa.
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Figure 3 Experimental distributions of 7 (here and further, indices a, b, ¢ correspond to the material “a”, “b”, and “c” respectively).
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Figure 4 Dependence of the average strength on volume fraction:
—a; — —b; ----c.

7 calculated using Expression 9 are shown in Fig. 3.
The distributions reflect the random nature of
strength and permit one to predict the random
strength distribution at any value of volume fraction.
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The non-linear character of the average strength R(\)
is shown in Fig. 4. Although the non-linearity of the
average strength may be estimated using conventional
statistical methods, the non-linearity of the depend-
ence of the strength scatter on volume fraction, R*(\s),
can be taken into account only by using the approach
presented. The experimental results presented in
Fig. 5 show the complex nature of functions
R*() = |R; — R(\s;)|, and especially, for materials “a”
and “b”. Therefore, the non-linear character of the
strength should be taken into consideration not only
for analysis of the average characteristics, but also for
the scatter.

5. Effect of volume fraction scatter

In a more general case, volume fraction should be
considered as a random parameter as well. Variations
in the volume fraction inevitably occur as the result of
non-uniform blending procedures, especially resulting
in non-uniform distribution of components at the
microlevel. Let us assume that the random volume
fraction \J is determined by the average value  and
the standard deviation o,,. Therefore, non-linear func-
tion R(\) in accordance with Equation 2 may be
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Figure 5 Experimental dependence of the function R* on volume fraction.
written in the following form: 12
~ o~ m —_ A~ . m —_— ~ . T
RW) = Y, R/ +7 ) RFY (17 = 40
j=0 j=0 S
=R
Then, the main statistical characteristics of R(\s) can <
be obtained using a linear approximation [4] in the g 81
following form A
OR( =7 =) B
~ =\,Fr =7) ~ _ c
Ry~ — V-V S
v £
~ _ o 4
OR(W =V, 7=r) . = s
yRO=VT=0G6 5 r@ a8y T
or o
5 2
Taking into account Approximations 2-3, one can n ]
easily obtain:
0 ' } ; } : } '
R~ ay +bi+¢ (19) 0.0 0.1 0.2 0.3 0.4
Standard deviation of volume fraction
where
Figure 6 Dependence of the strength standard deviation on the
_ e — e standard deviation of volume fraction at y = 0.5: —a; — —b; ----c.
a= Y jR’N b=} RiV;
j=1 j=0
m —_ — .
¢=— 2 (j— DRV (20)  useful in certain adjacent problems of stochastic
P ] p
i=

Thus, the average strength R(J) and the standard
deviation of cx({) are calculated as:

R ~a) +c= _i R\ (21)

or()) ~ (@ cj + b*o7)!? (22)

Expression 22 reflects the dependence of the strength
variability on the volume fraction scatter. Fig. 6
shows, as an example, dependence of o(\) on o, for
the above-mentioned materials “a”, “b”, and “c”. Sig-
nificant influence of the volume fraction scatter on
random strength distribution can be seen. Therefore,
reducing the variability of volume fractions leads to
a reduction of strength scatter, and hence, to an in-
crease in reliability.

6. Generalization of the model
Although the approach presented is considered chiefly
for random strength evaluation, its application may be

mechanics of materials. In more general form, a ran-
dom function Y (x) may be written as

Y(x) = Y(x) + FY*(x) (23)
where Y is some response; x is a relevant parameter of
structure or environments; approximation of Y (x) and
Y*(x) are chosen, for example, in the form of power
series. Then, the method of statistical evaluation
of functions Y(x), Y*(x) and parameter o, may be
carried out on the basis of the above-mentioned
algorithm as well.

Let us further consider an example regarding ran-
dom thermal expansion. Generally, thermal expansion
of typical composite and polymer materials is a non-
linear function of temperature T. Therefore, a thermal
expansion function, o(7T), should be used instead of
a traditional coefficient of linear expansion, o, [5].
Random function of thermal expansion may be repre-
sented as

(24)
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where

a(T) = i ;T a*(T) = i aFrT!  (25)

j=0 j=0
Hence, the average, a(T), and correlation, K, (T, T"),
functions are determined as:

T) = M{&(T)} = i 5; T/ (26)

KT, T)

E
=
Q
=
»ﬂ
|
QI
=
-
=
—
Q
ﬂ
|
Ql
=
&
Pt
—

(27)

Here, M {.} is the operator of averaging. Random
thermal strains, (T, T), thus may be evaluated as:

8T, Ty = f a(T)dT (28)
To
with the following average and correlation functions:
&(T, Ty = f a(T)dT (29)
T T "
KT, T, To)= | | KT, T)dTdT’
To Ty

= sz a*(T)dT j a*(T)dT"  (30)
T, Ty
where T is the initial temperature. Experimental re-
sults regarding stochastic thermal expansion of com-
posites may be found, for example, in [6, 7]. Statistical
evaluation of unknown parameters may also be de-
veloped using the algorithm presented in Fig. 2.

The approach presented may also be utilized for
analysis of more complex problems regarding multi-
dimensional statements. Let us consider a hybrid
composite material consisting of more than two com-
ponents. In this case, function of random strength
may be also written as:

R, Wi 1) = ROy o, Wi v)
+ FR* (W, s Vi1 (1)

where k is a number of components; \; is the volume
fraction of Ith component. For example of a three-
component hybrid (k= 3), approximations of
R(y, ) and R*(\ry, r,) may be written as:

R(\llla\lJZ): Z Z R_JJ\|!JI\|112

REWi2) = ), ) Ryl

Jj=0j"=0

J+i<m (32
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Thus, the problem of statistical evaluation is reduced
to a problem of determination of R;;., R¥;., o,, and
the algorithm presented in Fig. 2 allows one to receive
these parameters as well. The only difference is asso-
ciated with the type of approximations and the num-
ber of unknown parameters.

7. Conclusion

The approach presented possesses two main ad-
vantages. The first one is the ability to consider all
experimental results together using the proposed
probabilistic model. Cost and time of the experimental
programme may therefore be significantly reduced.
The second advantage consists of the ability to take
into account the unknown nature of both R({y) and
R*(y). 1t allows one to consider more accurate
stochastic description, and hence, to receive (or pre-
dict) more reliable results regarding actual strength
response. Experimental results for three kinds of typi-
cal polymer compositions do confirm a non-linear
character of R*(\) and show, in a general case, the
difference between the approach presented and the
classical least squares method. Although the main
attention has been paid to the random strength of
two-component heterogeneous materials, application
of the approach may be utilized for stochastic analysis
of other relevant problems, such as strength of hybrid
materials and macromechanical evaluation of thermal
expansion. Effect of the volume fraction scatter is
noted: reducing the scatter may be considered as
a way of improvement of actual strength response and
increasing the materials reliability.
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